α-Aminoazoles in Syntheses of Heterocycles. 3(5)-Aminopyrazole-4-carbonitriles in the Synthesis of Pyrazolo[1,5-a]pyrimidines

E. E. Emelina, A. A. Petrov, and A. V. Firsov
St. Petersburg State University, Universitetskii pr. 26, St. Petersburg, 198504 Russia
e-mail: emelina@hotmail.ru

Received September 16, 2006
DOI: 10.1134/S1070428007030281

Broad spectrum of biological activity of functionally substituted pyrazolopyrimidines stimulates development of new methods for the synthesis of these compounds [1-3]. In the past $10-15$ years, new sedative and soporific medical agents have been found among pyrazolopyrimidine derivatives; among these, Zaleplon \{ N-[3-(3-cyanopyrazolo[1,5-a]pyrimidin-7-yl)phenyl]-N-ethylacetamide \}is one of the most efficient [4, 5].

We have developed a procedure for the regioselective synthesis of substituted 7-aryl-5-methylpyrazolo-[1,5-a]pyrimidine-3-carbonitriles that are structurally related to Zaleplon. The procedure is based on cyclocondensation of 3(5)-aminopyrazole-4-carbonitriles with 1-arylbutane-1,3-diones in ethanol at a temperature not exceeding $0^{\circ} \mathrm{C}$ in the presence of trifluoroacetic acid as catalyst. The only products of these reactions are 7 -aryl-5-methylpyrazolo[1,5-a]pyrimidine-3-carbonitriles IIIa-IIIf; they are isolated in high yields as high-melting crystalline substances.

Reactions of unsymmetrical 1,3-diketones with 3(5)-aminopyrazoles [6,7] often lead to the formation
of mixtures of two regioisomeric pyrazolo[1,5-a]pyrimidines due to comparable reactivities of the two electrophilic centers in the initial diketone. Reactions of benzoylacetones IIa-IIc with 3(5)-aminopyrazole-4-carbonitriles Ia and Ib, performed according to the procedures described in $[6,7]$ (fusion or heating in acetic acid or ethanol), give almost inseparable mixtures of regioisomeric pyrazolopyrimidines III and IV (fraction of IV $\sim 10-30 \%$). We have succeeded in obtaining compounds IVa and IVb as the only products by reaction of 3(5)-aminopyrazole-4-carbonitriles Ia and $\mathbf{I b}$ with 4-phenylbut-3-yn-2-one (V), following the procedure described by us previously [8].

The structure of regioisomers IIIa, IIIb, IVa, and IVb was determined on the basis of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, taking into account characteristic chemical shifts of protons and carbon atom of the methyl group and C^{i} in the phenyl group of both compounds, δ_{C}, ppm: 5-CH3 $\sim 25,7-\mathrm{CH}_{3} \sim 17,5-\mathrm{C}^{i} \sim 136.5,7-\mathrm{C}^{i} \sim 131$ [8, 9]. In all cases, the $5-\mathrm{CH}_{3}$ signal appears in a stronger field than that from $7-\mathrm{CH}_{3}$ by about 0.1 ppm .

[^0]7-Aryl-5-methylpyrazolo[1,5-a]pyrimidine-3carbonitriles IIIa-IIIf (general procedure). A solution of 2.5 mmol of benzoylacetone IIa-IIC in 3 ml of ethanol was added to a solution of 2.5 mmol of aminopyrazole \mathbf{I} a or $\mathbf{I b}$ in 2 ml of ethanol containing 3 drops of trifluoroacetic acid at a temperature not exceeding $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ until the reaction was complete (TLC, Silufol UV-254), and the precipitate was filtered off, treated with boiling ethanol, and filtered off again.

5-Methyl-7-phenylpyrazolo[1,5-a]pyrimidine-3carbonitrile (IIIa). Yield 85%, mp $214^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: in $\mathrm{CDCl}_{3}: 2.76 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.03 \mathrm{~s}$ $(1 \mathrm{H}, 6-\mathrm{H}), 7.59-7.90 \mathrm{~m}(5 \mathrm{H}, \mathrm{Ph}), 8.34 \mathrm{~s}(1 \mathrm{H}, 2-\mathrm{H})$; in DMSO- $d_{6}: 2.69 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.42 \mathrm{~s}(1 \mathrm{H}, 6-\mathrm{H}), 7.59-$ $8.06 \mathrm{~m}(5 \mathrm{H}, \mathrm{Ph}), 8.69 \mathrm{~s}(1 \mathrm{H}, 2-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR spectrum (DMSO- d_{6}), δ_{C}, ppm: $25.25\left(\mathrm{CH}_{3}\right), 81.15(\mathrm{CN}), 112.22$ $\left(\mathrm{C}^{6}\right), 114.39\left(\mathrm{C}^{3}\right), 129.33,130.32\left(\mathrm{C}^{i}\right), 130.45,133.32$ $(\mathrm{Ph}), 147.40\left(\mathrm{C}^{2}\right), 147.70\left(\mathrm{C}^{7}\right), 151.62\left(\mathrm{C}^{3 \mathrm{a}}\right), 164.75$ $\left(\mathrm{C}^{5}\right)$. Found, \%: C 71.68; H 4.55. $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4}$. Calculated, \%: C 71.78; H 4.30.

2,5-Dimethyl-7-phenylpyrazolo[1,5-a]pyrimi-dine-3-carbonitrile (IIIb). Yield $81 \%, \mathrm{mp} 179^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), $\delta, \mathrm{ppm}: 2.55(3 \mathrm{H}$, $\left.2-\mathrm{CH}_{3}\right), 2.76\left(3 \mathrm{H}, 5-\mathrm{CH}_{3}\right), 7.30(1 \mathrm{H}, 6-\mathrm{H}), 7.58-$ $8.05(\mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR spectrum (DMSO- d_{6}), δ_{C}, ppm: $14.15\left(2-\mathrm{CH}_{3}\right), 25.14\left(5-\mathrm{CH}_{3}\right), 80.99(\mathrm{CN}), 111.59$ $\left(\mathrm{C}^{6}\right), 114.32\left(\mathrm{C}^{3}\right), 129.25,130.32\left(\mathrm{C}^{i}\right), 132.15(\mathrm{Ph})$, $146.77\left(\mathrm{C}^{7}\right), 152.03\left(\mathrm{C}^{3 \mathrm{a}}\right), 157.34\left(\mathrm{C}^{2}\right), 164.03\left(\mathrm{C}^{5}\right)$. Found, \%: C 72.40; H 4.95. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{4}$. Calculated, \%: C 72.56; H 4.87 .

7-(4-Isopropoxyphenyl)-5-methylpyrazolo-[1,5-a]pyrimidine-3-carbonitrile (IIIc). Yield 87%, $\mathrm{mp} 108{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), δ, ppm $(J, \mathrm{~Hz}): 1.37 \mathrm{~d}\left[6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, J=5.9\right], 2.70(3 \mathrm{H}$, $\left.5-\mathrm{CH}_{3}\right), 4.74$ sept ($1 \mathrm{H}, \mathrm{CH}, J=5.9$), $7.25(1 \mathrm{H}, 6-\mathrm{H})$, 7.03 d and $8.08 \mathrm{~d}\left(2 \mathrm{H}\right.$ each, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) \cdot{ }^{13} \mathrm{C}$ NMR spectrum (DMSO- d_{6}), δ_{C}, ppm: $22.55\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 25.17$ $\left(5-\mathrm{CH}_{3}\right), 70.31(\mathrm{OCH}), 81.32(\mathrm{CN}), 110.65\left(\mathrm{C}^{6}\right)$, $113.90\left(\mathrm{C}^{3}\right), 115.87,121.63,132.23\left(\mathrm{C}^{i}\right), 161.09$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 147.13\left(\mathrm{C}^{2}\right), 151.77\left(\mathrm{C}^{3 \mathrm{a}}\right), 147.13\left(\mathrm{C}^{7}\right), 163.86$ (C ${ }^{5}$). Found, \%: C 69.96; H 5.67. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$. Calculated, \%: C 69.85; H 5.52.

7-(4-Isopropoxyphenyl)-2,5-dimethylpyrazolo-[1,5-a]pyrimidin-3-carbonitrile (IIId). Yield 82%, $\mathrm{mp} 112{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), δ, ppm $(J, \mathrm{~Hz}): 1.38 \mathrm{~d}\left[6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, J=5.9\right], 2.54(3 \mathrm{H}$, $\left.2-\mathrm{CH}_{3}\right), 2.66\left(3 \mathrm{H}, 5-\mathrm{CH}_{3}\right), 4.74$ sept ($1 \mathrm{H}, \mathrm{CH}, J=5.9$), $7.25(1 \mathrm{H}, \mathrm{CH}), 7.03 \mathrm{~d}$ and $8.07 \mathrm{~d}\left(2 \mathrm{H}\right.$ each, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$. ${ }^{13} \mathrm{C}$ NMR spectrum (DMSO- d_{6}), δ_{C}, ppm: 14.13 $\left(2-\mathrm{CH}_{3}\right), 22.57\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 25.07\left(5-\mathrm{CH}_{3}\right), 70.30$
$(\mathrm{OCH}), 81.0(\mathrm{CN}), 110.19\left(\mathrm{C}^{6}\right), 114.12\left(\mathrm{C}^{3}\right), 115.84$, 121.78, $132.15\left(\mathrm{C}^{i}\right), 160.97\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 146.55\left(\mathrm{C}^{2}\right), 152.25$ $\left(\mathrm{C}^{32}\right), 157.06\left(\mathrm{C}^{7}\right), 163.34\left(\mathrm{C}^{5}\right)$. Found, \%: C 70.41; H 6.09. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$. Calculated, \%: C 70.57; H 5.92.

7-(4-Chlorophenyl)-5-methylpyrazolo[1,5-a]pyr-imidine-3-carbonitrile (IIIe). Yield $92 \%, \mathrm{mp} 292^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), δ, ppm: $2.70\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.47(1 \mathrm{H}, 6-\mathrm{H}), 7.67 \mathrm{~d}$ and 8.12 d $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 8.68(1 \mathrm{H}, 2-\mathrm{H})$. Found, \%: C 62.40; H 3.52. $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClN}_{4}$. Calculated, \%: C 62.58; H 3.38 .

7-(4-Chlorophenyl)-2,5-dimethylpyrazolo[1,5-a]-pyrimidine-3-carbonitrile (IIIf). Yield 90%, $\mathrm{mp} 207^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm: 2.58 $\left(3 \mathrm{H}, 2-\mathrm{CH}_{3}\right), 2.71\left(3 \mathrm{H}, 5-\mathrm{CH}_{3}\right), 6.94(1 \mathrm{H}, 6-\mathrm{H}), 7.56 \mathrm{~d}$ and $7.97 \mathrm{~d}\left(4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$, $\delta_{\mathrm{C}}, \mathrm{ppm}: 14.18\left(2-\mathrm{CH}_{3}\right), 25.33\left(5-\mathrm{CH}_{3}\right), 82.21(\mathrm{CN})$, $110.60\left(\mathrm{C}^{6}\right), 113.94\left(\mathrm{C}^{3}\right), 128.58,129.56,131.20\left(\mathrm{C}^{i}\right)$, $138.33\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 146.02\left(\mathrm{C}^{7}\right), 152.13\left(\mathrm{C}^{3 \mathrm{a}}\right), 158.26\left(\mathrm{C}^{2}\right)$, $163.36\left(\mathrm{C}^{5}\right)$. Found, \%: C 63.50; H 4.05. $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClN}_{4}$. Calculated, \%: C 63.72; H 3.92 .

7-Methyl-5-phenylpyrazolo[1,5-a]pyrimidine-3carbonitrile (IVa). Yield 90%, mp $164^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), δ, ppm: $2.86 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 7.54 m and $8.24 \mathrm{~m}(5 \mathrm{H}, \mathrm{Ph}), 7.85(1 \mathrm{H}, 6-\mathrm{H}), 8.58(1 \mathrm{H}$, $2-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR spectrum (DMSO- d_{6}), δ_{C}, ppm: 17.68 $\left(\mathrm{CH}_{3}\right), 82.47(\mathrm{CN}), 108.47\left(\mathrm{C}^{6}\right), 113.88\left(\mathrm{C}^{3}\right), 128.40$, 129.60, 131.94, $136.36\left(\mathrm{C}^{\mathrm{i}}\right)(\mathrm{Ph}), 147.90\left(\mathrm{C}^{7}\right), 148.92$ $\left(\mathrm{C}^{3 \mathrm{a}}\right), 150.60\left(\mathrm{C}^{2}\right), 159.26\left(\mathrm{C}^{5}\right)$. Found, \%: C 71.60; H 4.50. $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4}$. Calculated, \%: C 71.78; H 4.30.

2,7-Dimethyl-5-phenylpyrazolo[1,5-a]pyrimi-dine-3-carbonitrile (IVb). Yield 85%, mp $213^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), $\delta, \mathrm{ppm}: 2.52(3 \mathrm{H}$, $\left.2-\mathrm{CH}_{3}\right), 2.76\left(3 \mathrm{H}, 7-\mathrm{CH}_{3}\right), 7.70(1 \mathrm{H}, 6-\mathrm{H}), 7.58-$ $8.02(\mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR spectrum (DMSO- d_{6}), $\delta_{\mathrm{C}}, \mathrm{ppm}:$ $14.15\left(2-\mathrm{CH}_{3}\right), 17.63\left(7-\mathrm{CH}_{3}\right), 81.72(\mathrm{CN}), 107.90$ $\left(\mathrm{C}^{6}\right), 114.30\left(\mathrm{C}^{3}\right), 128.21,129.63,131.92,136.30\left(\mathrm{C}^{i}\right)$ $(\mathrm{Ph}), 148.48\left(\mathrm{C}^{7}\right), 150.60\left(\mathrm{C}^{32}\right), 157.94\left(\mathrm{C}^{2}\right), 158.67$ $\left(\mathrm{C}^{5}\right)$. Found, \%: C 72.49; H 4.92. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{4}$. Calculated, \%: C 72.56; H 4.87.

5-(4-Chlorophenyl)-7-methylpyrazolo [1,5-a]-pyrimidine-3-carbonitrile (IVe). ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), δ, ppm: $2.85\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.65 \mathrm{~d}$ and 8.28 d $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.95(1 \mathrm{H}, 6-\mathrm{H}), 8.78(1 \mathrm{H}, 2-\mathrm{H})$.

5-(4-Chlorophenyl)-2,7-dimethylpyrazolo[1,5-a]-pyrimidine-3-carbonitrile (IVf). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm: $2.65\left(3 \mathrm{H}, 2-\mathrm{CH}_{3}\right), 2.87\left(3 \mathrm{H}, 7-\mathrm{CH}_{3}\right)$, $7.29(1 \mathrm{H}, 6-\mathrm{H}), 7.50 \mathrm{~d}$ and $8.13 \mathrm{~d}\left(4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker DPX-300 spectrometer at 300 and 75 MHz ,
respectively, using CDCl_{3} and DMSO- d_{6} as solvents. Signals from protons in compounds IVe and IVf were identified in the ${ }^{1} \mathrm{H}$ NMR spectrum of the corresponding isomer mixture III/IV. Aminopyrazoles Ia and Ib were synthesized according to the procedure reported in [10]. Pyrazolo[1,5-a]pyrimidines IVa and IVb were prepared as described in [8].

REFERENCES

1. Chen, Ch., Wilcoxen, K.M., Huang, Ch.Q., McCarthy, J.R., Chen, T., and Grigoriadis, D.E., Bioorg. Med. Chem. Lett., 2004, vol. 14, p. 3669.
2. Gopalsamy, A., Yang, H., Ellingboe, J.W., Tsou, H., Zhang, N., Honores, E., Powel, D., Miranda, M., McGinnis, J.P., and Rabindran, S.K., Bioorg. Med. Chem. Lett., 2005, vol. 15, p. 1591.
3. Zaharan, M.A., El-Sharief, A.M.Sh., El-Gaby, M.S.A., Ammar, Y.A.A., and El-Said, U.H., Farmaco, 2001, vol. 56, p. 277.
4. George, C.F.P., Lancet, 2001, vol. 357, p. 1623.
5. Moore, K.A., Zemrus, T.L., Ramcharitar, V., Levine, B., and Fowler, D.R., Forensic Sci. Int., 2003, vol. 134, p. 120.
6. Elnagdi, M.H., Elmoghayar, M.R.H., and Elgemeie, G.E.H., Advances in Heterocyclic Chemistry, Katritzky, A.R., Ed., New York: Academic, 1987, vol. 41, p. 319.
7. Maquestiau, A., Target, H., and Van den Eyden, J.-J., Bull. Soc. Chim. Belg., 1992, vol. 101, p. 131.
8. Petrov, A.A., Emelina, E.E., and Firsov, A.V., Russ. J. Org. Chem., 2000, vol. 36, p. 1027.
9. Emelina. E.E., Petrov, A.A., and Firsov, A.V., Russ. J. Org. Chem., 2001, vol. 37, p. 852.
10. Robins, R.K., J. Am. Chem. Soc., 1956, vol. 78, p. 784.

[^0]: la, lb

 $$
 \begin{aligned}
 & \mathrm{Ph}-\mathrm{C} \equiv \mathrm{C}-\mathrm{COMe}(\mathrm{~V}) \\
 & \mathrm{EtOH}, \mathrm{CF}_{3} \mathrm{COOH}, 0^{\circ} \mathrm{C}
 \end{aligned}
 $$

 IVa, IVb, IVe, IVf

 IIIa-IIIf

 IVa, IVb
 $\mathbf{I}, \mathrm{R}=\mathrm{H}(\mathbf{a}), \mathrm{Me}(\mathbf{b}) ; \mathbf{I I}, \mathrm{Ar}=\mathrm{Ph}(\mathbf{a}), 4-i-\mathrm{PrOC}_{6} \mathrm{H}_{4}(\mathbf{b}), 4-\mathrm{ClC}_{6} \mathrm{H}_{4}(\mathbf{c}) ; \mathbf{I I I}, \mathbf{I V}, \mathrm{Ar}=\mathrm{Ph}, \mathrm{R}=\mathrm{H}(\mathbf{a}), \mathrm{Me}(\mathbf{b}), \mathrm{Ar}=4-i-\mathrm{PrOC}_{6} \mathrm{H}_{4}$, $\mathrm{R}=\mathrm{H}(\mathbf{c}), \mathrm{Me}(\mathbf{d}), \mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{H}(\mathbf{e}), \mathrm{Me}(\mathbf{f})$.

